Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems
نویسندگان
چکیده
In model terrestrial ecosystems maintained for three plant generations at elevated concentrations of atmospheric carbon dioxide, increases in photosynthetically fixed carbon were allocated below ground, raising concentrations of dissolved organic carbon in soil. These effects were then transmitted up the decomposer food chain. Soil microbial biomass was unaffected, but the composition of soil fungal species changed, with increases in rates of cellulose decomposition. There were also changes in the abundance and species composition of Collembola, fungal-feeding arthropods. These results have implications for long-term feedback processes in soil ecosystems that are subject to rising global atmospheric carbon dioxide concentrations.
منابع مشابه
Effect of increasing CO2 on the terrestrial carbon cycle.
Feedbacks from the terrestrial carbon cycle significantly affect future climate change. The CO2 concentration dependence of global terrestrial carbon storage is one of the largest and most uncertain feedbacks. Theory predicts the CO2 effect should have a tropical maximum, but a large terrestrial sink has been contradicted by analyses of atmospheric CO2 that do not show large tropical uptake. Ou...
متن کاملRising atmospheric CO2 reduces sequestration of root-derived soil carbon.
Forests have a key role as carbon sinks, which could potentially mitigate the continuing increase in atmospheric carbon dioxide concentration and associated climate change. We show that carbon dioxide enrichment, although causing short-term growth stimulation in a range of European tree species, also leads to an increase in soil microbial respiration and a marked decline in sequestration of roo...
متن کاملCarbon-Nitrogen Interactions in Terrestrial Ecosystems in Response to Rising Atmospheric Carbon Dioxide
Interactions involving carbon (C) and nitrogen (N) likely modulate terrestrial ecosystem responses to elevated atmospheric carbon dioxide (CO2) levels at scales from the leaf to the globe and from the second to the century. In particular, response to elevated CO2 may generally be smaller at low relative to high soil N supply and, in turn, elevated CO2 may influence soil N processes that regulat...
متن کاملRecent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake
Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and ...
متن کاملMIT Joint Program on the Science and Policy of Global Change Consequences of Considering Carbon/Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle
A number of observational studies indicate that carbon sequestration by terrestrial ecosystems in a world with an atmosphere richer in carbon dioxide and a warmer climate depends on the interactions between the carbon and nitrogen cycles. However, most terrestrial ecosystem models being used in climate-change assessments do not take into account these interactions. Here we explore how carbon/ni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 280 5362 شماره
صفحات -
تاریخ انتشار 1998